
A Collaborative guide to ATLAS Development

R. Clint Whaley ∗Peter Soendergaard †

June 6, 2008

Abstract

This paper exists to get you started if you want to do some ATLAS development.
The hope is that as new developers work on ATLAS, they will add to this note, so that
this information grows with time.

∗rwhaley@users.sourceforge.net
†soender@users.sourceforge.net

1

Contents

1 Introduction 3

2 Adding to this note 3

3 Getting the ATLAS code through CVS 4
3.1 Background on ATLAS code base . 4
3.2 Getting the ATLAS CVS tree and the working ATLAS directory 4
3.3 Basefile/extracted file interaction . 5

4 Getting CVS write access/Becoming an ATLAS SourceForge developer 5
4.1 ATLAS developer guidelines . 5
4.2 Getting CVS write access . 6

4.2.1 I don’t agree to the guidelines, what now? 6
4.2.2 How about being a developer and not using CVS for writes? 6

4.3 Setting up for CVS write access . 7
4.4 Further info . 7

5 Adding a LAPACK routine to ATLAS 8
5.1 Row-major LAPACK routines . 8
5.2 Outline of Steps . 9
5.3 Create and debug tester . 9

5.3.1 Writing ATLAS/src/testing C-to-f77 wrapper 10
5.3.2 Getting your routines extracted . 10

5.4 Create and debug ATLAS internal routines 10
5.5 Add C and F77 interface routines . 10
5.6 Update the LAPACK quick reference guides 11

6 Architectural defaults 11
6.1 Rambling on about architectural defaults 11
6.2 Making your own architectural defaults . 12
6.3 Getting ATLAS to use your shiny new defaults 12

7 Sanity testing for an ATLAS install 12
7.1 Invoking the sanity tests . 13
7.2 Understanding the sanity test output . 13
7.3 Finding the context of the error . 14
7.4 Tracking down an error in the BLAS interface testers 14
7.5 Tracking down an error in the bin/ testers 16

8 Antoine’s testing scripts 16
8.1 Setting up and installing the tester . 16
8.2 Getting a good BLASlib . 17

8.2.1 Using an optimized BLAS . 17
8.3 Running the tester . 18
8.4 Finding errors . 18

2

8.5 Tracking down errors in the bin/ testers . 19

9 Finding a good NB for GEMM 19
9.1 Better kernel timing does not always yield faster GEMM 19
9.2 Large NB means more time in cleanup . 20
9.3 Large NB means more time in unblocked application code 20
9.4 Finding a good NB . 20

10 Information on atlconf 22
10.1 Weaknesses in spew/config . 22
10.2 Probe Overview . 23
10.3 Architectural Probes . 25
10.4 Notes on configure . 25
10.5 Compiler Setup and Handling in ATLAS Config 26

3

1 Introduction

This note exists to get you started if you want to write new code for ATLAS, or if you
want to modify ATLAS source. It is not for kernel contribution, which is what most people
do when contributing to ATLAS. Kernel contribution is much simpler, and is explained in
ATLAS/doc/atlas contrib.ps or in html format at:

http://math-atlas.sourceforge.net/atlas_contrib

So what is the difference between development and kernel contribution? In kernel con-
tribution, you write a kernel to be used by ATLAS, using the provided ATLAS testers and
timers to verify it, and when you are satisfied with its performance and reliability, you
submit your kernel to the ATLAS team, and they accept it or not, and you are done.

Doing actual core development is quite a bit more complex. Probably the biggest change
is that you will need to write your own tester and timer for your new code. No code will be
accepted into the ATLAS code base without a tester which can be used to verify it. Since
writing a decent tester is usually at least as hard as writing the code it tests, and is always
a whole lot less enjoyable, the author must bear the pain of producing it along with the
pride of producing the code. As a developer, you will be responsible for testing such new
code on several platforms as well.

If you are instead hoping to modify some of the existing code base, remember that
for non-kernel operations, portability and robustness must be the primary goal. There are
many sections of ATLAS that we know to be second rate on a certain platform, but we
also know that it works on the twenty or so architectures that ATLAS is routinely compiled
for, so we leave it that way. This means that when a modification is made to a previously
existing routine, the modifying author must have good evidence that the new code is as
portable as the old. In short, the barrier to replacing tested code is high.

It is possible that users want access to the CVS repository even though they do not plan
on doing development, mainly I’d guess so they can get access to the newest stuff without
waiting for developer releases. Also, kernel contributors who make subsequent changes to
their routines can speed up their adoption by submitting them in a format ready for CVS
check-in.

2 Adding to this note

This note is included in the AtlasBase/TexDoc of the CVS repository, and anyone can
submit a patch against it giving additional information. As the founder of ATLAS, I have
written a seed of a document explaining how to get access to the code. It is my hope that
other developers will add important information that they discover as they go, so that this
doc will grow over time, getting much information that I probably take so much for granted
that I would never think to document.

Therefore, new sections are welcome, and probably a FAQ appendix would be a good
idea. As people contribute, their names will be added to the author list.

4

3 Getting the ATLAS code through CVS

3.1 Background on ATLAS code base

ATLAS was not originally developed in CVS. ATLAS was developed using a programming
tool called extract, which means ATLAS is actually maintained in something called base-
files. If you think of regular development being access by value, and CVS using a level of
indirection, CVS on basefiles gives you two such levels of indirection. So, if you want to be
able to use CVS check-ins, you will need to learn at least the basics of extract. Details on
extract can be found at:

http://www.cs.utsa.edu/~whaley/extract/Extract.html

Note that if you just want read-only access, you will need to install extract so that you
can get at the files, but you will not need to learn anything about it.

3.2 Getting the ATLAS CVS tree and the working ATLAS directory

Here are the steps to get a local ATLAS CVS tree:

1. Install extract: Download and install extract as described on the extract homepage.

2. Checkout the ATLAS CVS tree: From a CVS-capable machine connected to the
Internet, go to the directory where you want the ATLAS basefiles to be, and issue:

cvs -z3 -d:pserver:anonymous@math-atlas.cvs.sourceforge.net:/cvsroot/math-atlas \
checkout AtlasBase

3. Update topd: Edit the created AtlasBase/make.base, and change the definition of
the topd macro to match where you have put the AtlasBase directory. For example, if
I issued the CVS command in /home/rwhaley/work, I change line 46 from something
like:

@define topd @/home/rwhaley/Base/AtlasBase@

to:

@define topd @/home/rwhaley/work/AtlasBase@

4. Create ATLAS working directory and extract files: Go to the directory where
you want the working copy of the ATLAS/ directory to reside. In there, issue these
two commands:

extract -b <your topd>/make.base -o Makefile rout=Make.atldir
make

5

3.3 Basefile/extracted file interaction

You’ll have to scope the extract page for any kind of real feel for how this works, but some
atlas-specific details are in order here. In each subdirectory of the ATLAS/ tree, you will
find a file Make.ext. If you type make -f Make.ext, this makefile will extract all new files
in this subdirectory for which the basefile is newer.

So, what usually happens is you a messing with something, and you do it in the ATLAS/
directory. When you are confident in your change, you put it into the appropriate basefile
in the AtlasBase/ directory (note that examining Make.ext will show you what basefile a
given extracted file comes from), and you then re-extract over your working copy with the
above command.

4 Getting CVS write access/Becoming an ATLAS Source-
Forge developer

In a colossal case of lunacy, the developers of SourceForge decided to allow anyone associated
with a SourceForge project full write access to all CVS files. The permissions that can be
granted or taken away are the right to administer lists, changes html docs, do file releases,
etc. To me, this is a little like having a bank that encrypts your name and password with
the best available means, but leaves your money out in open bins on the front lawn.

Normally, I would say the more the merrier in terms of adding people as SourceForge
developers. I’d be happy to see hundreds of people associated with the project. On the
other hand, I’d be a little scared with having hundreds of people I’ve never met have full
write access to a project as detailed and delicate as ATLAS. CVS has marvelous rollback
abilities, but I’m afraid as of right now anyway, I don’t have marvelous CVS abilities, and
so I tend to err on the side of timidity.

What all this whining is coming down to is, you have to first show me the money before
I’ll add you as a developer :). When you first begin hacking ATLAS, the method to use is
to submit patches or code to the list, and if your submission is incorporated into ATLAS,
we can then get you added as a SourceForge developer.

4.1 ATLAS developer guidelines

We’re all still learning, but here are the rough guidelines that you’ll need to be OK with to
be added as an ATLAS SourceForge developer:

1. You only directly commit to basefiles you originate. Assuming you have
written something for ATLAS before, you should have your own source to maintain.
For instance, if you add some new kernels, we’ll create you a subdirectory under
AtlasBase/kernel. For some development, though, you will need to modify basefiles
that you did not originate. For instance, if you wrote a new lapack routine, you would
minimally need to modify a basefile originated by me that creates the lapack header
files. For these mods, you should ideally send the basefile maintainer a patch against
the basefile, which the basefile maintainer will vet and apply. If that is impractical,
you will need to agree with the maintainer on a different strategy. This rule is very
important, and I will tend to remove someone from the group immediately if it is
violated.

6

2. Always leave the main CVS branch in a working, tested state. As completely
unfair as it is, I (Clint) am the only guy allowed to break the main CVS branch. This
means that if you have serious development you’d like to do under CVS, you need to
do a developer branch until everything is working. If your mods are all to your own
files, you will simply merge the developer branch back into the main once the new
stuff is tested and working. If they involve other routines, then you’ll need to have
the person responsible for the modified codes help with the merge. So what can you
apply directly to the main trunk? For instance, if you were maintaining a kernel, and
you improved it, then tested (building the full gemm, running the testers, etc), and
everything is OK, you could check that in after the testing and development process
was done.

3. You only submit on the bug tracker for your own code. The ATLAS bug
tracker serves roughly the same service for developer releases the errata does for
stable: a place for all confirmed bugs. You can confirm bugs in your code, but the
maintainer of the problematic code should confirm bugs in code he/she is responsible
for. So, if you find what you think is a bug in someone else’s code, you submit it
as a support request, and the code maintainer should scope it there. If it is indeed
a bug, the maintainer should move it to the bug tracker, where it will remain until
fixed by a subsequent developer release. Often, these ”bugs” may turn out to be
misunderstandings or bad installs, and thus never get moved to the bug list.

4. When in doubt, ask. If you want to do something that you think might effect other
people, ask them first. If you are not sure if you should do something, ask. If the
question is general, post to the developer list. If it is delicate or personal in some way,
you can send to me directly at rwhaley@users.sourceforge.net.

4.2 Getting CVS write access

If the developer guidelines seem reasonable to you, and you have code that is already been
accepted into ATLAS, send mail to rwhaley@users.sourceforge.net, saying you want
CVS write access, and agree to the developer guidelines. Just to make sure you’ve read
them, I’d like the e-mail to specifically say:

I will not do CVS check-ins on files that I am not the maintainer
for, and I’ll keep the main branch in working order.

4.2.1 I don’t agree to the guidelines, what now?

Send it to the list, or to me if it is delicate. We ought to be able to find a way to make
things work.

4.2.2 How about being a developer and not using CVS for writes?

Say you want to write a kernel for the AltiVec, but you don’t presently have access to a
G4. SourceForge has a compile farm that contains a G4, but you don’t have compile farm
access until you are a member of a SourceForge group. In this case, I’m happy to add you
as a developer with your agreement that you won’t do CVS writes until we agree otherwise.

7

4.3 Setting up for CVS write access

After we agree that you will be an ATLAS SourceForge developer, you need to go to
www.sourceforge.net, and sign up as a SourceForge user. You should see a sidebar with:

Status:
Not logged in

Login via SSL
New User via SSL

You want to take the New user via SSL link. This gets you a SourceForge user name,
which you need to send to me at rwhaley@users.sourceforge.net. I then have to add
you as an ATLAS developer.

You need to change your CVS access from anonymous/read to developer/write. It helps
if you set your CVS RSH and CVSROOT environment variables appropriately. CVS RSH should
be ssh. My CVSROOT is set to

:ext:rwhaley@math-atlas.cvs.sourceforge.net:/cvsroot/math-atlas

Replacing my name (look for rwhaley in the above) with yours should get you what you
need.

CVS check in/out will still not work correctly at this date. Now, do:

ssh math-atlas.cvs.sourceforge.net

and enter your user name and password. As soon as you get a prompt, logout. This process
creates some needed files.

Finally, if you have an ATLAS tree created by anonymous CVS access, the easiest thing
is to delete it and recheck out as yourself. CVS creates some files on the first checkout
saying what kind of access you are using, and these will still show as anonymous, despite
your CVSROOT (this is true for branching as well, so watch out). If you want to scope the CVS
commands, I’m sure you can switch over without deleting, but removing and rechecking out
is how I’ve seen this problem successfully fixed.

4.4 Further info

As I said before, I’m not much of a CVS guru. I have found

http://ximbiot.com/cvs/manual/stable

to be a helpful in doing CVS stuff.
For SourceForge, everything I know about it came from:

https://sourceforge.net/docman/?group_id=1

The companion piece of this guide is the atlas contributer guide, found in ATLAS/doc/atlas contrib.pdf
of the tarfile. You really need to know that before doing much with this guide.

Extract is explained at:

http://www.cs.utsa.edu/~whaley/extract/Extract.html

8

5 Adding a LAPACK routine to ATLAS

It is probably not practical that ATLAS will provide a complete LAPACK API (as it does
with the BLAS) in the foreseeable future, both due to the algorithmic complexity of some
of the operations, and to the sheer number of routines in LAPACK. It must be understood
that adding routines adds to the inertia and maintenance costs of the package, and this
additional burden must be offset by real advantage for the user.

ATLAS has so far only added LAPACK routines to ATLAS when we can make a
performance-enhancing algorithm modification. For instance, we added the LU and Cholesky
factorizations because we used the recursive formulations of these routines, which provides
for better performance on pretty much any cache-based architecture.

However, when we have added such routines, we usually add the correlated routines
even when a performance advantage is not supplied. For instance, upon adding GETRF
support, we also added GETRS and GESV. As far as column- major routines go, we supply
no better algorithm for GETRS or GESV than LAPACK. However, since these routines are
very simple, and GETRF is very often used with them, we added them along with GETRF.
The idea here is that their maintenance costs are not heavy, and real advantage is given
to the user in that we have sped up GETRF, and if the factor and solve are all he needs,
ATLAS will supply a complete solution.

The column-major comment points out another reason to add a routine to ATLAS:
ATLAS supplies the only performance-aware row-major LAPACK implementation that I
am aware of (I’m sure there are some, I just don’t know of any that aren’t simply using
the col-major stuff, and thus performing terribly). It is possible that someone would want
to add an LAPACK routine to ATLAS simply because they need a row-major version, and
someone being motivated enough to write it would probably be ample justification to add
the routine to the ATLAS tarfile.

5.1 Row-major LAPACK routines

So far, we have accepted no routines that do not also include a row-major equivalent, both
for BLAS and for LAPACK. We hope to continue this. There are as yet only a few users of
the row-major LAPACK/BLAS that I am aware of, but I believe that this is a chicken/egg
problem.

Some people insist on using row-major arrays in C, but if they have access to a BLAS/LAPACK
that supports it, they find the performance is no better than what they get with simple
loops, or that it is calling the col-major in a naive way, and cutting the problems size they
can solve in half by copying. Therefore, people with row-major bias don’t call the stuff
’cause it doesn’t help them, and the problem continues.

It is my belief, therefore, that good-quality row-major stuff must be produced before
significant demand will appear. If I’m wrong, I guess we’ll someday drop support for row-
major, but I don’t think this will be the case over a long enough time line.

Therefore, despite it being a hassle, having a good quality row-major implementation
is critical for getting an LAPACK routine into ATLAS. For many routines, since we have
row-major BLAS, the algorithm stays the same, and only some pointer arithmetic need be
changed.

Other routines in LAPACK (GETRF is one) have a built in algorithmic bias towards
column-major (in GETRF, this is doing row-pivoting), and another algorithm with the same

9

stability and usage characteristics should be employed for row-major (eg., column-pivoting,
for GETRF).

5.2 Outline of Steps

Here are the general steps to use when adding an LAPACK routine to ATLAS:

1. Create and debug tester using LAPACK

• Update extractors

• Update Makefiles

2. Write and test ATLAS internal routines using above tester

• Update extractors

• Update Makefiles

3. Update atlas clapack.h to include your new routines

4. Create C and F77 interfaces to your routine

• Update extractors

• Update Makefiles

5. Update clapack.h

6. Update the LAPACK quick reference guides.

5.3 Create and debug tester

The first step in adding a new routine to ATLAS is to create a tester (and timer) which can
be used to verify the correctness of your code. More than half of the challenge is getting
the tester right; with a good tester/timer, the code usually comes fairly easily.

Your tester will go in ATLAS/bin when extracted; you can examine some of the testers
available there to get an idea of what you should do (eg., look at ATLAS/bin/[lu/llt/slv/trtri/uum]tst.c).
All of these routines come from the basefile AtlasBase/Clint/atlas-tlp.base, which is
what you should submit your patch against, unless you want to create your own, separate
basefile.

After your tester is written, its column-major components can be tested against LA-
PACK by using the make <rout>tstF target in ATLAS/bin/<arch>. You can even test the
row-major components by having the F77 interface transpose the matrices on input, and
back on output. See ATLAS/bin/uumtst.c for an example of this for square matrices.

As part of your debugging of the tester, be sure that it not only agrees that LAPACK
produces the right answer, but truly detects errors as well. For instance, manually overwrite
an entry, both in the matrix and in the padding (in separate tests), and make sure it is
caught by the tester.

10

5.3.1 Writing ATLAS/src/testing C-to-f77 wrapper

You first need a way for your tester, written in C, to call the LAPACK routine, written
in F77. All such language translation routines are kept in ATLAS/src/testing, and come
from the basefile ATLAS/Clint/atlas-ilp.base. This wrapper is trivial, though some of
the integer/string stuff is not obvious. Steal the code from the other examples.

5.3.2 Getting your routines extracted

Now you need to get your files to appear in the right subdirectories, so you need an entry
in the appropriate Make.ext. All the Make.ext files comes from AtlasBase/make.base, so
find the rout for your directory in this file (for examples the line saying
@ROUT ATLAS/interfaces/lapack/F77/src/) and add your routine name to the line con-
taining the name of all the other routines.

So, now you are in your working directory (say ATLAS/src/lapack), and you type make
-f Make.ext, and nothing happens, no new files show up. This is because you need to
re-extract your Make.ext file. This can of course be done by removing your whole ATLAS
tree and reinstalling, but less brutally you can “just” use something like this: extract -b
/home/soender/AtlasBase/make.base -o Make.ext rout=ATLAS/src/lapack -langM. The
-langM switch is required for extract to properly handle makefiles, so you cannot skip it.

This is the basic procedure for this sort of stuff. When you need a makefile in a BLDdir
subdirectory, the appropriate makefile is copied by Make.top from the ATLAS/makes/ di-
rectory. Check Make.ext to see which basefile they come from, and add your routine name
among the names of the other routines.

Remember to update the Makefiles for both ATLAS/bin and ATLAS/src/testing, and
to get these makefiles into the appropriate subdirs. In order to extract new makefiles, and
get them put into the appropriate subdirs, I typically do something like (from the BLDdir:

pushd ~/TEST/ATLAS/makes/ ; make -f Make.ext ; cd .. ; \
make refresh ; popd

(replace the path and arch appropriately, obviously).

5.4 Create and debug ATLAS internal routines

The internal LAPACK routines are kept in AtlasBase/Clint/atlas-lp.base. Add your
routine here, and update ATLAS/src/lapack’s Make.ext and Makefile appropriately to
build your routine.

You will add your routine in atlas-lp.base with an additional @ROUT keyline, but also
do not forget to update the include file atlas lapack.h at the bottom of the file as well.
You will need to add your routine to the prototype part, as well as to the macro renaming
part. Examine the basefile for details.

Once it is extracting, use your LAPACK-debugged tester to debug your code.

5.5 Add C and F77 interface routines

We do this step last, because we don’t want to add API routines until the code is working.
Having debugged and made sure the code is faster than LAPACK, we’re now ready to

11

make it available to the user via the advertised APIs. The extracted API files are kept in
subdirectories under ATLAS/interfaces/lapack.

The F77 interfaces are kept in AtlasBase/Clint/atlas-fint.base. Look at the ex-
isting examples and notice how extract generates all four precision from the same routine,
if you use the extract macros. All the code for this interface can be ripped from LAPACK
and adapted. Note that you will usually need to examine both complex and real versions
of the original LAPACK routine, to find any differences in interface/testing and comments.
You will also need to remove unneeded EXTERNAL declaration, etc.

This interface does the parameter checking, and converts any FORTRAN string argu-
ments to some predefined integer values, and then call the ATLf77wrap interface. Scope any
of the existing routines for details on this.

The C interfaces are easy to write, since they should just check the input arguments,
and then call the ATLAS routine. The codes are stored in atlas-clp.base. Check it out
for lots of examples.

5.6 Update the LAPACK quick reference guides

The ATLAS user API is defined in the quick reference guides under AtlasBase/TexDoc.
Right now, the supported LAPACK API is small enough to fit both C and F77 interfaces
on one card (single 2-sided landscape page), but eventually it will be split in two, as with
the BLAS quick reference cards. Either use the Makefile to do it, or remember to manually
throw the -tlandscape flag to dvips, and the -paper a4r flag to xdvi.

6 Architectural defaults

ATLAS’s architectural defaults are simply a record of the results of a previously run ATLAS
search. They exist for a couple of reasons:

1. Using architectural defaults, install times are reduced to almost bearable levels

2. Because the search is empirical, installs can go wrong if unmonitored. Architectural
defaults given out in the standard tarfile have at least passed the laugh test

6.1 Rambling on about architectural defaults

One FAQ for architectural defaults is why any timings are necessary when using them. The
standard architectural defaults only rarely describe everything discovered by a search, but
rather give only those data that we feel sure will not vary a great deal. For instance, for
many machines, the kernels to use, etc., are fully specified, but CacheEdge is not. CacheEdge
varies depending on your L2 cache size, which varies depending on architecture revision, so
it is not specified, allowing it to tune itself for this variable parameter, while still skipping
the search over less variable things (eg., if the L1 cache or FPU units change, this is usually
a new architecture, not a revision of an old).

That’s the theoretical reason why they shouldn’t cover all discovered items. However,
ATLAS presently times the kernels in order to be able to produce a comprehensive SUM-
MARY.LOG, and these timings could be skipped, assuming this functionality were added
to the atlas install process.

12

There are some weaknesses of architectural defaults. One of the main ones is how they
can go out of date, and cause slowdown. One big way this can happen is with compiler
changes. For instance, gcc 3.0 produces completely different (and inferior) x86 code than
the 2.x series, and 4.0 was similarly worse than latter-day gcc 3. Almost all architectural
defaults in ATLAS 3.8 are compiled with gcc 4.2.

Anytime a different compiler is used, the architectural defaults become suspect. For
truly inferior compiler (like gcc 3.0 or 4.0), there is no way to get good performance, but
at least some problems can be worked around by having ATLAS adapt itself to the new
compiler, and architectural defaults prevent this from happening.

6.2 Making your own architectural defaults

This section describes how to create architectural defaults as of ATLAS 3.7.12 and later.
For older releases, the process is similar, but not quite the same, and is covered in the older
atlas devel available in those tarfiles.

1. Get an install, correct in all details, that you want to immortalize.

2. cd to your OBJdir/ARCHS directory

3. Type make ArchNew

This will copy the search result output files into a directory <OBJdir>/ARCHS/<MACH>/,
with appropriate subdirs under that. You can then go into these guys and delete files you
don’t want to be part of the defaults (eg., atlas cacheedge.h, etc).

Now, to save these defaults to a transportable format, you can have the makefile create
the tarfile for you by:

make tarfile

6.3 Getting ATLAS to use your shiny new defaults

Pretty easy:

1. Run configure, creating Make.inc, but do not start the install.

2. Take the tarfile you created, and copy it under ATLAS/CONFIG/ARCHS source directory.

3. Edit your Make.inc and make sure the ARCH macro matches the base name of your
tarfile (eg., P4ESSE3), and that the INSTFLAGS macro has the flags -a 1 (do use
arch defs).

4. Continue the install as normal (eg. make build).

7 Sanity testing for an ATLAS install

From ATLAS3.3.8 forward, ATLAS has had a “sanity test”, which just does some quick
testing in order to ensure that there are no obvious problems with the installed ATLAS
libraries. It runs all of the standard BLAS interface testers, with the default input files, and
it then runs a few fixed cases of ATLAS’s lapack tester routines (eg., ATLAS/bin/invtst.c,

13

etc). The advantage of these lapack testers is that they depend on many of the BLAS as
well as the lapack routines, so you get a lot of testing for a minor amount of time. The
sanity checks do not require any non-ATLAS libraries for testing, so the only dependence
that a user who has installed ATLAS may not be able to satisfy is the need for a Fortran77
compiler, which is required for the BLAS interface testers. As of ATLAS3.7.12, ATLAS can
also run a reduced set of tests for users who do not have a fortran compiler.

7.1 Invoking the sanity tests

These tests are invoked from your install directory by:

make check

If you are using threads, you will want to run the same tests for threading via:

make ptcheck

7.2 Understanding the sanity test output

Once you fire off this tester, you’ll see a lot of compilation going on. All compilation is done
up front, and then the testers are run at the end. All tester output is dumped to some files
(we’ll see specifics in a bit), which are then automatically grepped for errors at the end of
the run. It is the results of this grep that the user will see. For example, here’s the output
from a run on my Athlon running Linux:

dudley.home.net. make check
...
... bunch of compilation ...
...
DONE BUILDING TESTERS, RUNNING:
SCOPING FOR FAILURES IN BIN TESTS:
fgrep -e fault -e FAULT -e error -e ERROR -e fail -e FAIL \

bin/Linux_ATHLON/sanity.out
8 cases: 8 passed, 0 skipped, 0 failed
4 cases: 4 passed, 0 skipped, 0 failed
8 cases: 8 passed, 0 skipped, 0 failed
4 cases: 4 passed, 0 skipped, 0 failed
8 cases: 8 passed, 0 skipped, 0 failed
4 cases: 4 passed, 0 skipped, 0 failed
8 cases: 8 passed, 0 skipped, 0 failed
4 cases: 4 passed, 0 skipped, 0 failed
DONE
SCOPING FOR FAILURES IN CBLAS TESTS:
fgrep -e fault -e FAULT -e error -e ERROR -e fail -e FAIL \

interfaces/blas/C/testing/Linux_ATHLON/sanity.out | \
fgrep -v PASSED

make[1]: [sanity_test] Error 1 (ignored)
DONE

14

SCOPING FOR FAILURES IN F77BLAS TESTS:
fgrep -e fault -e FAULT -e error -e ERROR -e fail -e FAIL \

interfaces/blas/F77/testing/Linux_ATHLON/sanity.out | \
fgrep -v PASSED

make[1]: [sanity_test] Error 1 (ignored)
DONE

So, in the LAPACK testers we see no failures (all tests show 0 failed), and we have
no output from the BLAS testers, which is what we want. Notice the lines like:

make[1]: [sanity_test] Error 1 (ignored)

This is due to fgrep’s behavior, and does not indicate an error. If fgrep does not find
any pattern matches, it returns a 1, 0 on match. Therefore, since we are grepping for error,
getting an “error condition” of 1 is what we hope for.

7.3 Finding the context of the error

If the sanity test ouput shows errors, the next step is to track down where they are coming
from. You can see in the output the files that are being searched for errors. They are:

bin/sanity.out
interfaces/blas/C/testing/sanity.out
interfaces/blas/F77/testing/sanity.out

The threaded sanity test uses the same filenames with pt prefixed.
The first thing to notice is which of these tests are showing errors. The testers in bin

are higher level than those in the interfaces directories, so if you get errors in both, track
down and fix the interface errors first, as they may be causing the lapack errors. If both
C and F77 BLAS interfaces are showing errors, I always scope and fix the Fortran77 stuff
first, since Fortran is simpler (no RowMajor case to handle). Only if an error only shows
up in C testing do I scope that output instead of the Fortran77.

The grepped error message probably gives you no idea what actually went wrong (it
may show something as simple as:

FAIL

for instance), so you must go look at the sanity.out in question. For instance, you might
need to scope interfaces/blas/F77/testing/sanity.out. You do a search for whatever
alerted you to the problem (eg., FAIL), and you see by the surrounding context what tester
failed.

7.4 Tracking down an error in the BLAS interface testers

The BLAS testers are split by BLAS Level (1, 2 or 3) and precision/type (s,d,c,z). The
basic names of the tester executables are

x<pre>blat<lvl>
x<pre>cblat<lvl>

15

for Fortran77 and C, respectively. The Level 1 testers (x[s,d,c,z]blat1) test certain fixed
cases, and thus take no input file. So if the error is in them, you simply run the executable
with no args in order to reproduce the failure.

The Level 2 and 3 testers allow a user to specify what tests should be run, via an input
file. The standard input files that ATLAS runs with are:

<pre>blat<lvl>.dat
c_<pre>blat<lvl>.dat

respectively. The format of these input files is pretty self explanatory, and more explanation
can be found at:

www.netlib.org/blas/faq.html

To run the tester with these files, you redirect them into the tester. For instance, to run
the double precision Level 2 tester with the default input file, you’d issue:

./xdblat2 < ~/ATLAS/interfaces/blas/F77/testing/dblat2.dat

You should be aware that only the first error report in a run is accurate: one error
can cause a cascade of spurious error reports, all of which may go away by fixing the first
reported problem. So, it is important to find and fix the errors in sequence.

I usually copy the input file in question to a new file that I can hack on (for instance, if
the error was in the double precision Level 2, I might issue:

cp ~/ATLAS/interfaces/blas/F77/testing/dblat2.dat bad.dat

I then repeatedly run the routine and simplify the input file until I have found the smallest,
simplest input that displays the error.

The next step is to rule out tester error. The way I usually do this is to demonstrate
that the error goes away by linking to the Fortran77 reference BLAS rather than ATLAS
(you can only do this for errors in the F77 interface, obviously). I usually just do it by
hand, i.e., for the same example again, I’d do:

f77 -o xtst dblat2.o /home/rwhaley/lib/libfblas.a

If the ATLAS-linked code has the error, and this one does not, it is a strong indication that
the error is in ATLAS. If the F77 BLAS are shown to be in error, it is usually a compiler
error, and can be fixed by turning down (or off) the optimization used to compile the tester.

Now you should have confirmed the tester is working properly, and that the error is in
a specific routine (let us say DNRM2 as an example). As a quick proof that DNRM2 is
indeed the problem, you can link explicitly to the F77 version of DNRM2, and to ATLAS
for everything else (see Section 8.2 for hints on how to do this). If this still shows the error,
you are confident that ATLAS’s DNRM2 is indeed causing the problem, and you should
either track it down, or report it (depending on your level of expertise).

16

7.5 Tracking down an error in the bin/ testers

The sanity tests only run the LAPACK testers in this directory. The LAPACK routines
depend on the BLAS, so ignore errors in lapack testers until all the BLAS pass with no
error. If you have errors in LAPACK but the BLAS pass all tests, then you have to hunt
for the error in the LAPACK routines.

First, rule out that it’s not a problem in the BLAS that is just not showing up in the
BLAS testing. Get yourself a reference BLAS library, as explained in Section 8.2. Then,
set your Make.inc’s BLASlib macro to point to the created reference BLAS library. Then,
you need to compile a library that uses ATLAS’s lapack routines, but the reference BLAS.
This can be done by compiling the same executable name with sys suffixed. For instance,
if you were running the LU tester, xdlutst, you would say make xdlutst sys, and then
run this executable with the same input.

If the error goes away, then the error is really in the ATLAS BLAS somewhere. I then
usually look at the LAPACK routine and tester in question to find out what its BLAS
dependencies are, and manually link in the reference BLAS object files until I find the exact
BLAS causing the problem. Usually once you know what routine causes the prob, you
can reproduce the error with the BLAS tester (i.e. you need a IDAMAX call with N=12,
incX=82).

If the error still persists using ATLAS’s LAPACK and the Fortran77 BLAS, the next
trick is to do LAPACK just like the BLAS: download and compile the F77 LAPACK from
netlib (www.netlib.org/lapack/lapack.tgz). You then set your Make.inc’s FLAPACKlib
to point to your Fortran77 lapack library. You then suffix the base executable name with
F sys (eg., for LU again, you would do make xdlutstF sys), and you will get a tester
linked against the Fortran77 BLAS and LAPACK. If this also shows to be in error, there is
an error in the tester, or in the compiler. Try turning down compiler optimization to rule
in or out compiler errors.

8 Antoine’s testing scripts

Before a stable release, we always do as much testing as possible. The 900 pound gorilla of
testers is Antoine’s tester scripts. This tester can run as long as several days, and does a
great number of both fixed and random tests, and if it completes with no errors, you have a
pretty good idea that the code is fairly solid. Even the casual user ought to run the sanity
testing as a matter of course, and that should always be ran and passed first. Also, much
of the methodology for understanding output, tracking down problems, etc, is the same for
this tester and the sanity test, so read those sections first for tips I will not bother to repeat
here.

8.1 Setting up and installing the tester

First, you need to get the tester tarfile. You can get it from the file releases on sourceforge,
or, if you are using CVS, you can checkout the AtlasTest module. You then untar this guy
in the directory you want it (bunzip2 -c atlas test1.1.3.tar.bz2 | tar xvmf -).

Now, you create a directory for each architecture you wish to run the tester on, using
the configure command. For instance, I could create a subdirectory under my AtlasTest
directory with the following commands (following the above untar):

17

cd AtlasTest
mkdir Core2DuoSSE3
../configure --atldir=/home/whaley/TEST/ATLAS3.7.36.0/obj64/

Where of course --atldir provides the path to the BLDdir that you want to test. From
here on out, we will call this directory, which you have configured for a particularl platform’s
test, as the TSTdir.

Some of these tests need a reference BLAS library to compare against, so you need to
fill in your ATLAS install’s BLDdir/Make.inc with a trusted, complete BLASlib. See the
following section for details on this.

You are now ready to start the testing, as described in the following sections.

8.2 Getting a good BLASlib

Some of these tests need a reference BLAS library to compare against, so you need to fill
in your ATLAS install’s BLDdir/Make.inc with a trusted, complete BLASlib. On modern
machines, we typically just compare against the Fortran77 reference BLAS from netlib,
though this makes the install run longer. On slower machines, you may need to use an
optimized/vendor BLAS to do testing, but then when you find errors you will need to
debug whether it is ATLAS or the optimized BLAS that are causing the problem.

Get the BLAS reference tarfile from www.netlib.org/blas/blas.tgz. then do some-
thing similar to the following:

mkdir FBLAS
cd FBLAS
gunzip -c ../blas.tgz | tar xvf -
gfortran -O -c *.f
ar r ~/lib/libfblas.a *.o

You may need to substitute for your Fortran77 compiler and flags, and if your system
uses ranlib, run that on libfblas.a as well. It is important the Fortran77 compiler and
flags used to compile this library match those used by ATLAS!

Now simply set your Make.inc’s BLASlib to something like:
BLASlib = /home/rwhaley/lib/libfblas.a

8.2.1 Using an optimized BLAS

You may want an optimized library if one is available, since the Level 3 tests can go on
for much longer if you use only the reference library. However, only a few vendor libraries
supply all of the BLAS that ATLAS provides (to be fair, ATLAS provides BLAS above
those mandated by the standard; it provides all the routines present in the Fortran77
reference library). So, the easiest way to get a complete library is to also install the reference
Fortran77 library from netlib, as described in the previous section.

Now, you can set BLASlib so that the optimized library is linked in first, and the
reference BLAS are used for any routines not provided in the optimized library. For instance,
here’s an old BLASlib for using MKL:

BLASlib = /home/rwhaley/lib/libmkl32_def.a /home/rwhaley/lib/libfblas.a

18

For many routines, the tester cannot tell the difference between an error in the BLAS
given by BLASlib, and an error in ATLAS. Subsequent section will explain how to figure
this out, but understand that a lot of optimized BLAS will fail this tester, in which case
you need to link against the F77 BLAS instead of the optimized version of that routine.
Let us say you find out that there are errors in the optimized DTRSM. In this case, you can
simply link in the F77 reference DTRSM object file first to override the on in the optimized
lib. So, your BLASlib line would then look something like:

BLASlib = /home/rwhaley/FBLAS/dtrsm.o \
/home/rwhaley/lib/libmkl32_def.a /home/rwhaley/lib/libfblas.a

Obviously, if you have more than a few routines like this, just testing against the f77
reference BLAS and taking the extra runtime is the way to go.

8.3 Running the tester

The first thing to be aware of in running the tester is that the log files it creates can take up
a lot of space. You can kill the log files as soon as the tester finishes, but you need enough
space for it to complete. The command to run the tester is simple:

make

As previously mentioned, however, this tester can run as long as several days. So, if you
are connected to the machine with an unreliable or short- term connection, you will need
to ensure it can continue to run even if you are disconnected. Under most unixes, you can
do this by using the nohup command. For example:

nohup make |& tee PPRO.out &

is what I use with the tcsh shell. Bourne shell uses users will need a different redirect
command.

8.4 Finding errors

Some errors you may see on standard out, or in the log file. If you haven’t seen any there,
you need to scope the stored up output created by the tester. The tester puts such output
files in TSTdir/res. There’s a small shell script AtlasTest/scope.sh which, when run
from TSTdir will grep the relavent files for errors. If it finds an error, you then edit the file
in question (scope.sh prints the file it is grepping), and find the test run that caused the
error. This can take a bit what with the volume of output, but is doable if you stick with
it.

Once you have the error, you need to repeat it. You can try running the exact case, but
sometimes that won’t do it (for instance, you have a memory error that requires you to run
many cases); you then need to find a small run that does demonstrate the error.

You should then apply the normal tricks (linking to F77 BLAS instead of sys blas,
having the tester call the f77 blas twice, etc) to ensure the error really is in ATLAS, before
tracking the error to its source.

19

8.5 Tracking down errors in the bin/ testers

There are two types of bin/ testers: lapack and blas. The BLAS testers have executable
names of the form

x<pre>l<level>blastst

The BLAS testers test ATLAS against a known-good implementation, so the first thing to
do is make sure the error is in ATLAS, and not the known-good implementation. To do this,
compile the reference BLAS from netlib (using conservative compiler flags), as discussed in
Section 8.2, and then relink and rerun the test in question. If the error goes away, you have
found an error in your known-good library, not ATLAS. If it stays, you have found an error
in ATLAS, and you should track it down or report it. See Section 7.5 for information on
tracking problems in the LAPACK testers.

9 Finding a good NB for GEMM

One of the things I do most frequently with user-submitted kernels is reduce the blocking
factor that the user has chosen. I often choose smaller NB than the best for asymptotic
GEMM performance, and even more often choose one that does not yield the best perfor-
mance in the kernel timer. To understand why, you must understand the following points,
explained in turn below:

1. Better kernel timing (eg. make ummcase in your <OBJdir>/tune/blas/gemm/ direc-
tory) does not always yield better total GEMM performance

2. Large NB means significantly more time in cleanup code

3. Large NB means significantly more time in unblocked application code

9.1 Better kernel timing does not always yield faster GEMM

The kernel timer (invoked by one of the make mmcase variants available in <OBJdir>/tune/blas/gemm/)
tries to mimic the way ATLAS calls the kernel. However, it does not do everything the same
way. First, there is no cleanup, so it is always calling the kernel only. More importantly,
CacheEdge has not yet been determined, so no Level 2 Cache blocking is being performed.
Therefore, it may sometimes look like you are better off to block the kernel for the L2
when using these kernel timers, when in fact, if you instead block for the Level 1 cache,
CacheEdge will then further speed things up later, and thus the smaller NB achieves better
GEMM performance, even when it runs slower in the kernel timer.

For machines with very large L1 caches, often several blocking factors that fit into L1
have roughly the same performance. In such a case, it is very likely that you want to choose
the smallest achieving that rough performance, as it will allow more blocks to fit into the
L2 blocking to be done later.

If a kernel appears to get much better performance with a large NB, the best idea is to
build a full GEMM using both the best-performing small NB, and the best performing large
NB, and seeing what the gap truly is. Very often, the small kernel will actually be better
even asymptotically, and if it is not, it will often be so much better for smaller problems
that it makes sense to use it anyway.

20

Even beyond these explanations, it is sometimes the case that the kernel timer predicts
good performance that is not realized when the full GEMM is built. This is usually due
to inadequate cache flushing, leading to overprediction of performance because things are
retained more in the cache than they are in practice. Therefore, I usually pump up the
flushing mechanism (set L2SIZE of your Make.inc to ridiculously large levels). No matter
what, actual full GEMM performance is the final arbiter. If it is not as high as predicted by
the kernel timer, it may be worthwhile to see if other, smaller NB, cases achieve the same
full-gemm performance.

9.2 Large NB means more time in cleanup

One bad news about choosing a large NB is that applications will spend more of their time
in cleanup. Let us say you choose a block factor of 120. In this case, many applications will
never even call your optimized kernel, but spend all their time in GEMM cleanup. Some
applications are staticly blocked, and if their NB is smaller than yours, they can spend their
entire time in cleanup even for large problems.

Therefore, if you must choose a large NB in order to get adequate GEMM performance,
you must pay an unusual amount of attention to cleanup optimization. However, as the
next section will discuss, even if cleanup ran at the same speed as your best kernel, this will
yield poor performance for many codes.

9.3 Large NB means more time in unblocked application code

Probably the worst thing about choosing a large NB is that many applications use Level
1 and 2 BLAS in order to do the unblocked part of the computation. These BLAS are
usually at least an order of magnitude slower than GEMM. Therefore, as you increase NB,
for applications with unblocked portions, you increase the proportion of time spent in this
order-of-magnitude slower code. Therefore, even with perfect cleanup, a large NB may result
in an application running at less than half speed, even though GEMM performance is
quite good.

To get an idea of this, simply scope the factorizations provided by LAPACK. These
applications are staticly blocked, so that the column factorizations (eg., DGETF2 for LU)
are used until NB is reached. If ILAENV returns a blocking factor smaller than your
GEMM, the applications will stay in cleanup even for large problems. Even worse, some
applications (eg., QR) require workspace proportional to NB, and since dynamic memory
is not used, it is possible even if you hack ILAENV to use the correct blocking factor, they
will be forced to a smaller one.

9.4 Finding a good NB

I will call the first level of cache accessed by the floating point unit the Level 1 cache,
regardless of whether it is the first level of cache of the machine (there are a number of
machines, such as the P4 (prescott) and Itanium where the FPU skips the Level 1 cache).
Let Ne be the number of elements of the data type of interest in this cache. If this cache
is write-through, then a rough guess for a good upper bound is NB ≤

√
Ne. If the cache is

not write-through, this is still the upper bound, but many larger caches often benefit from

21

using a smaller NB, one roughly NB <
√

Ne
3 . We can describe this more exactly, but these

bounds are easy to compute during tuning.
You should not choose an NB that is a power of 2, as this could occasionally cause nasty

cache conflicts. There’s often a small advantage to choosing NB that are a multiple of cache
line size; this can sometimes be critical, depending on the arch.

So, the basic idea is to start looking at NB given by the above two computations, and
then try a little smaller and larger using the kernel timer. If you get two that tie for out-
of-cache performance, always take the smaller. If best performance is achieved with very
large NB (say NB ≥ 80), then always confirm that it yields better GEMM performance
than a smaller NB, and that application performance is not severely impacted, particularly
for smaller problems.

The way I usually time application performance is to time ATLAS’s LU. This actually
gives you a very rosy picture of how a large block factor will effect performance, in that it
uses recursion rather than staticly blocking. This means that ATLAS’s LU does not have
any unblocked code, and thus doesn’t slow down the way LAPACK’s LU will for large NB.
However, if even this code shows performance loss for smaller sizes, you know your cleanup
needs to get a lot better, or you need to reduce NB, even if it results in a slight reduction
in GEMM performance. If you want to get a better idea of how most applications will
perform, time one of LAPACK’s factorizations instead.

Under no circumstances should you choose a blocking factor much larger than 120. I
confine the ATLAS search to a maximal size of 80 for the above reasons, but occasionally
go a little higher for machines without effective L1 caches. However, this can absolutely kill
application performance. Further, it is never a good idea to completely fill an Level 2 cache
with your block. It may look good in GEMM, but it will die in any application, both for
the reasons above, and the following: The L2 cache is shared instruction/data. Filling it
with data will often lead to instruction loading/flushing cycle when a larger application is
calling. Remember that GEMM is of interest because of all the applications that are built
from it, not when used in isolation.

If a NB larger than 60 only gives you a few percent, always choose a smaller one; only
go above 80 for significant advantage, and essentially don’t go above 120 unless absolutely
necessary, and then you can expect slowdown in many applications, even once you have
fully optimized all cleanup cases.

22

10 Information on atlconf

NOTE: this information was out of date before it was finished, so this discussion should
be viewed as an introduction only.

For ATLAS 3.7.12, ATLAS’s configure routine was completely rewritten for greater
modularity. The total amount of code probably increased, but the amount that must be
examined at any time should be very much smaller.

In the new system, the topmost unit is ATLAS/configure which is a BFI shell script
which allows ATLAS’s config.c to be invoked in a way very similar to gnu configure. This
shell script gathers some info and fills in a Makfile which is then used to build xconfig
from ATLAS/CONFIG/src/config.c. config.c is a driver program that first calls var-
ious probes to determine any information not overridden by user flags, and then calls
xspew to create a full Make.inc for the target architecture. xsprew is built from the file
ATLAS/CONFIG/src/SpewMakeInc.c.

The idea is to change ATLAS’s install so it consists of the following commands:

1. /path/to/ATLAS/configure : Create Make.inc and build subdirs in the present
directory (ATLAS no longer requires building in arch-spec directories under the source
tree)

2. make build : Build ATLAS

3. make check : run sanity tests

4. make time : run simple benchmarks, compare observed vs. expected performance,
and issue warning if too low

• Keep record of arch default installs with perfermance as % of clock rate (not
peak!)

• If arch def used wt bad compiler, this will detect performance difference, and
user should be warned

• If no arch defaults (so expected performance unknown), still create standard
benchmark output file for submission to ATLAS

5. make install : copy libraries and include files to user-specified directories

• Will need to figure out what-all include files to copy!

10.1 Weaknesses in spew/config

1. Needs a flag for the delay variable

2. Needs correct lib setup:

• Spew & config flags for BLASlib, FBLASlib, FLAPACKlib, extra syslibs.

• config.c needs an updated GetSysLib, output passed to spew via extra syslibs.

• Need flags for archiver, archflags, and ranlib (also table lookup in config.c)

23

10.2 Probe Overview

From ATLAS 3.7.12 on, ATLAS’s config routine was rewritten for greater modularity, with
each config probe having its own driver and so on. For this discussion, we will refer to the
machine doing the cross-compiliation as the frontend (abbreviated as FE), and the machine
which ATLAS is being tuned for the backend (abbreviated as BE). Note that if you are not
doing cross-compilation (the majority of the time) the front-end and back-end are the same
machine.

Every type of probe has a frontend driver (occasionally, config may directly call the
backend driver, if there is only one) which will itself call multiple backend drivers. For
instance, the probe to compute the architecure runs on the frontend, and calls different
backend drivers depending on the assembly dialect and operating system of the backend.
The files for the frontend drivers are located in ATLAS/CONFIG/src, and the backend files
are in ATLAS/CONFIG/src/backend, with all include files in ATLAS/CONFIG/include. All
frontend probes use the file atlconf misc.c (prototyped in atlconf misc.h), which han-
dles things like file I/O, issuing shell commands, etc. The current probes used by config
are:

1. OS Probe

Purpose: Discover the Operating System being used
Inputs: None
Outputs: Enumerated type of OS
FE files: probe OS.c

BE files: None (uname on BE)

2. Assembly dialect probe

Purpose: Discover what ATLAS assembly dialect works
Inputs: OS enum (gives subdialect of assembler)
Outputs: Enum of assembly dialect
FE files: probe asm.c,
BE files: probe this asm.c – [probe gas parisc.S, probe gas ppc.S, probe gas sparc.S,

probe gas x8632.S, probe gas x8664.S]

3. Vector ISA extension probe – assembly

Purpose: Discover which of supported vector ISA extensions work
Inputs: enums for OS and assembly dialect
Outputs: iflag = ((1<<ISA0) | (1<<ISA1) | ... | (1<<ISAn))

FE files: probe vec.c

BE files: probe svec.c – [probe AltiVec.S, probe SSE.S], probe dvec.c – [probe SSE2.S],
probe dSSE3.c –[probe SSE3.S]

4. Vector ISA extension probe – C: Write this later, using C-inline statements for
platforms where we don’t speak the assembly, but can still use peter’s vector include
file

24

5. Architecture probe

Purpose: Discover target architecure/machine

Inputs: OS and assembly enums [force 64/32 bit usage]

Outputs: enum of arch

FE files: archinfo.c

BE files: archinfo x86.c, archinfo linux.c, archinfo freebsd.c, archinfo aix.c,
archinfo irix.c, archinfo sunos.c

Notes: See Section 10.3 for more details.

6. 64-bit probe

Purpose: Discover if arch supports 64-bit pointers

Inputs: OS, arch [user choice]

Outputs: 32 / 64

files: Config directly calls archinfo

Notes: : New policy: config assumes whatever compiler gives you w/o -m32 -m64,
and user must throw special flag to append these to the line.

7. Compiler probe

Purpose: Find good compilers

Inputs: OS, arch [,suggested compilers]

Outputs: The following:

(a) F2CNAME, F2CINT, F2CSTRING enums
(b) Compilers and flags

FE files : probe comp.c probe f2c.c probe ccomp.c

BE files : f2cname[F,C].[f,c], f2cint[F,C].[f,c], f2cstr[F,C].[f,c], ccomp
interaction not yet done

Note: This is complex, see Section 10.5 for details.

8. Arch defaults probe

Purpose: Discover arch defaults

Inputs: OS, arch, compilers

Outputs: Whether to use arch defs (INSTFLAGS in Make.inc

files: ARCHS/Makefile

invoke: Arch default setup is instigated by atlas install.c.

notes: May want to have it autobenchmark kernel, test against table of expected
perf, to see if arch def are OK wt this compiler version.

25

10.3 Architectural Probes

We use the archinfo xxx probes to discover the following architectural information:

• ’n’: number of cpus

• ’c’: number of cache levels

• ’C’ #: size in KB of cache level #

• ’v’: verbose (prints strings as well as ints)

• ’m’: clock rate in Mhz

• ’a’: ATLAS architecture classification

• ’b’: support for 64 / 32 bits

• ’t’: Is cpu throttling currently on (-1: no, 0: don’t know, 1: yes)

If a given probe cannot find that particular item, it is returned as 0.
The frontend wrapper script archinfo.c calls these guys according to OS, and tries to

get all flags filled in with union of functionality of archinfo x86 and archinfo <OS>.

10.4 Notes on configure

New policies:

• Any 64-bit arch defaults to building whatever the compiler natively does w/o flags
unless overridden

• L2SIZE always set to 4MB unless overridden

• Timer defaults to standard wall/cpu unless overridden

– Exception is solaris, where we default to solaris hr timers

– If Mhz is passed in, use cycle-accurate wall-timer on x86

Deprecated machines (no longer supported in config or arch def):

• Alpha chips (some EV6 may still be alive – UTK?)

• All pre-G4 PowerPC chips

• All pre-UltraSPARC Sun chips

Still missing HPUX support. Linux and FreeBSD support best tested.

26

10.5 Compiler Setup and Handling in ATLAS Config

This is complicated as hell. Potentially, each architecture/OS combo has unique compiler
and flags for each supported compiler (more below), and the user can override any/all of
these. I’m changing the number of supported compilers for greater flexability. These are:

ICC : compiles all C interface routines. Since it is not used for any kernel compilation the
performance impact of this compiler should be minimal.

SMC : used to compile ATLAS single precision matmul kernels

DMC : used to compile ATLAS double precision matmul kernels

SKC : used to compile all non-interface, non-gemm-kernel single precision ATLAS routines

DKC : used to compile all non-interface, non-gemm-kernel double precision ATLAS routines

XCC : used to compile all front-end codes

F77 : Valid fixed-format Fortran77 compiler that compiles ATLAS’s F77 interface routines.
This should match the Fortran77 the user is using. This compiler’s performance does
not affect ATLAS’s performance, and so may be anything.

Here’s my present design:

1. Compiler defaults: are read in from atlcomp.txt, which allows the user specify
default compiler/flags, as well as specific ones for particular architectures, and multiple
compilers for a given arch.

• ATLAS/SRC/probe comp.c

2. Executable search: takes name of executable (in this case a compiler name), and
finds the path to it. Skipped if the user provides the path as part of the compiler.

• unimplemented: presently use compilers w/o path

3. C compiler interaction probe: separate probe that takes two or more C compilers
and their flags as arguments, and makes sure they are able to call each other w/o
problems.

• unimplemented: presently assumed to work

4. F77/C calling convention probe: as in present config, but as an independent
probe.

• done: front-end is probe f2c.c

27

